您当前位置:首页>新闻资讯>人工智能技术对学科的影响:越理性,越感性
    人工智能技术对学科的影响:越理性,越感性
  • 所属分类: 行业动态
  • 新闻类别: 初升高
  • 发布时间: 2017-09-01

     “这是最好的时代,这是最坏的时代;这是智慧的时代,这是愚蠢的时代。”人工智能时代的钟声已经敲响,我们还在工业时代的迷梦中寻找教育的未来。谁曾想到,未来来得如此之快,我们是否准备好做出改变?未来,我们需要什么样的人才?我们需要什么样的教育?我们不妨想象一下,未来10年、20年的教育将发生怎样的改变?也许一个崭新的时代并不会留给我们那么长时间去形成新的教育生态系统。 

    数  学

    传统的工业时代的数学,其训练方法是数值计算,其指向是力学计算,这种侧重至今还非常浓厚。随着知识库的普及和共享以及计算工具的进化,越来越少的人将来从事传统的工程计算行业,而正宗的工科专业越来越向着专业化和高端化演化(如学材料的将来的进入门槛很可能是博士)。但是,人工智能今后用到的大量的数学以及人与人打交道用到的计算机数学,统计学基础的数学,这方面中国数学还停留在工业时代。美国学生从高中就开始问卷处理和微积分的学习,大学数学更加有用的是方程组、统计学等。数学是一个典型的年龄相关性学科,一定要从小学,而且转向数值和算法类的学习,从偏向材料计算的高等数学方向,转向偏向矩阵计算的统计数学方向,逻辑学、几何学和统计学成为三个数学学习的支柱。

    物  理

    有一位著名的物理学家回顾过去物理百年,发现一个有趣的现象:“力”这个概念,在物理学上看,已经不是一个原始的变量了,能量和质量才是,为什么我们的老师还在使用这个概念呢?那是因为在机械时代,“力”是最容易理解的组合概念。在工业革命前后的几百年直到今天,物理学教育的重点还是偏向传统力学计算方向,从中小学来说就是牛顿力学。然而随着工业时代的结束,人们更容易见到的力学概念不再是机械和天体,而是转向社交网络、计算机图像、信息变量、生物体和电子学以及更容易接受的能量、时间维度。数学老师们转向统计学的同时,物理老师应该考虑从牛顿力学转向量子力学和热力学甚至时空维度,这些对于孩子未来的人生更是基础,而通过物理学进行基础的科学实证的训练以及科学观测和数据处理,才是物理学最基础的作用和价值体现。不然,人生什么年龄都可以去学物理而不必非要从未成年时代去学。

    化  学

     中美物理学和化学都是选择性的,但比较中美化学教育,却发现有很大的不同。美国高中化学就允许且必须使用带有功能性计算的计算器,而中国大学生都没有这方面的训练。也就是说,随着化学和生物化学要求越来越高、知识点越来越多,设法绕过烦人的记忆而走向逻辑,是美国学习化学的方向,这点也值得我们注意。另外,化学的侧重由从偏向无机化学方向的基础化学,转向偏向生物和有机化学方向甚至与物理相结合的量子规律,是化学学科的重点。例如,很多美国的大学录取要看高中生在化学创新方面的实践,能创新的往往是生物化学。

    外  语

    工具性的外语逐渐失去市场,形式节奏上的美学、逻辑学角度的词源学、社会学角度的语言学、心理学角度的语义学成为外语复兴的落脚点。另外,似乎从来没有人将计算机程序当作外语来教,事实上,随着工具性的外语被人工智能取代,计算机程序语言很可能成为一种外语,而很多软件人才是学外语出身的,也不断印证这个结论。

    语  文

     

    可以预料的是,随着工具性的人工智能的出现,原先学习语文的工具性的方法(如语法),逐渐将退出语言学习(包括外语),而作为母语的语文之所以在工具化人工智能时代还得到重视,最重要的理由也许是仪式感的表达:回到经典、回到表达、回到应用、回到美学。

    除了以上学科教育的重点随着技术经济必然发生变化外,学科学习的醒悟和内在逻辑将更加重要,学科历史、学科逻辑、学科故事将替代题库训练,因为作为计算的精确性除了特殊人才的培养外,将让位于工具和人工智能,而人要考虑体验和持续学习的兴趣和逻辑。学科学习之间还将朝着融合的方向发展,应用学科和元学科的分离意味着应用学科更加朝着整合的方向发展:地理、生物、科技等融合课程,朝着综合应用发展。